Advanced Terminology & Definitions

Population Genetics Definitions

Adaptation = A trait that increases the survivability of an individual or its ability to reproduce when compared to individuals that do not possess that trait

Adaptive Radiation = Radiation of a group of organisms into populations adapted to exploit different ecological niches

Adaptive Trait = A trait that increases the fitness of an individual

Allopatric Speciation = Speciation that occurs when populations become geographically isolated due to genetic drift and when selection pressures differ between the two populations

Assortative Mating = A mating pattern that occurs when individuals tend to mate with other individuals of the same genotype and phenotype

Bottleneck = A large scale but short term decrease in the population size followed by an increase in the population size. Can cause speciation events

Convergent Evolution = Similarities between species that are the result of similar, but evolutionarily independent responses to common environmental factors. E.g. The wing of a bird and the wing of a butterfly

Evolution = Descent with modification = a change in the characteristics of a population over time = changes in the allele frequency of a population over time

Fitness = The degree to which an individual contributes genes to the next generation

Founder Effect = The establishment of a new population by a small number of individuals. can cause speciation events

Frequency = The proportion of a genotype, phenotype, gamete, or allele in a population. E.g. 6/10 have brown hair = a frequency of 0.6

Gene Pool = All of the copies of all of the alleles in a population that could be contributed by members of the present generation to members of the next generation

Genetic Drift = A change in the allele frequency of a population resulting from sampling error in taking gametes from the gene pool to make zygotes and from chance variation in the survival/reproductive success of individuals

Hardy-Weinberg Equilibrium = An ideal population in which the allele and genotype frequencies do not change from one generation to the next generation due to a lack of selection, mutation, migration, and genetic drift and due to the occurrence of random mating

Heritability = The fraction of the total phenotypic variation in a population that is caused by genetic differences between individuals

Homology = Similarities between species that results from the inheritance of traits from a common ancestor

Homoplasy = Similarities in the traits found in different species that is due to convergent evolution, parallelism, or reversal. It is not due to common descent

Hybrid Zone = A geographic zone where different populations/species interbreed

Inbreeding = Mating between relatives

Inbreeding Depression = A decrease in the fitness of an individual or a population due to inbreeding. It is often the result of a decrease in heterozygosity of an increase in the homozygosity (both are due to inbreeding)

Inclusive Fitness = An individual's total fitness = indirect fitness (fitness due to the reproduction by relatives made possible by that individual) + direct fitness (fitness due to the individual's own reproduction)

Macroevolution = Large scale evolutionary change = evolution of the differences between populations that would justify their placement into different genera (or higher level taxa)

Microevolution = Changes in the gene frequencies and trait distributions that occur within species and populations

Migration = The movement of alleles from one population to another population due to the movement of individuals or gametes

Natural Selection = Specific phenotypes confer increased survivability or reproductive success to the individuals that possess them

Negative Selection = Selection against deleterious mutations

Outbreeding = Mating between unrelated individuals

Polymorphism = The existence of more than one allele or variant in a population

Population = A group of individuals capable of interbreeding plus all of their offspring

Positive Selection = Selection for advantageous mutations

Preadaptation = A trait that changes due to natural selection and takes on a new function

Relative Fitness = The fitness of an individual, phenotype, or genotype compared to other individuals in the population

Species = Groups of populations that are capable of interbreeding and are evolutionarily independent from other populations

Sympatric Speciation = A speciation event involving species living in the same geographic area

Synapomorphy = A shared derived trait

Transitional Form = A species exhibiting traits that are common to both the ancestral and derived groups


Phylogenetics Definitions

Bootstrapping = A term commonly used in phylogenetic reconstruction = A technique used for estimating the strength of evidence for the existence of a particular node in a phylogenetic tree. Values range between 0% and 100% with 100% being the strongest level of support

Branch = A branch in a phylogenetic tree. See diagram

Clade = A group of species descended from a common ancestor = a monophyletic group

Evolution = Descent with modification = a change in the characteristics of a population over time = changes in the allele frequency of a population over time

Extant = Living today

Extinct = Not living today

Monophyletic Group = A population of a group of species descended from a common ancestor

Node = Branching point in a phylogenetic tree. See diagram

Outgroup = In phylogenetic analysis, a group that diverged prior to the rest of the taxa

Paraphyletic Group = A group of species that includes the common ancestor and some, but not all of that common ancestor's descendants

Phylogeny = The evolutionary history of a group

Psuedogene = DNA sequences that are homologous and resemble functioning genes, but are not transcribed

Sister Species = Species that diverged from the same node on a phylogenetic tree

Species = Groups of populations that are capable of interbreeding and are evolutionarily independent from other populations

Taxon = Any named group of organisms

Tip = The end of a branch on a phylogenetic tree. See diagram

tree

A = Node

B = Branch

C = Tip

D = Monophyletic Group

E = Paraphyletic Group

F = Outgroup

G = Sister Taxa/Species


References

• Freeman, S. and Herron, J. C. 2001. Evolutionary Analysis Second Edition. Prentice-Hall, Inc. New Jersey.

• Griffiths, A. J. F., Miller, J. H., Suzuki, D. T., Lewontin, R. C., and Gelbart, W. M. 1996. An Introduction to Genetic Analysis Sixth Edition. W.H. Freeman and company. New York.

Contact Krissy Bird - all pictures are copyrighted to me unless otherwise noted - April 12, 2011